Ameva: An autonomous discretization algorithm
نویسندگان
چکیده
This paper describes a new discretization algorithm, called Ameva, which is designed to work with supervised learning algorithms. Ameva maximizes a contingency coefficient based on Chi-square statistics and generates a potentially minimal number of discrete intervals. Its most important advantage, in contrast with several existing discretization algorithms, is that it does not need the user to indicate the number of intervals. We have compared Ameva with one of the most relevant discretization algorithms, CAIM. Tests performed comparing these two algorithms show that discrete attributes generated by the Ameva algorithm always have the lowest number of intervals, and even if the number of classes is high, the same computational complexity is maintained. A comparison between the Ameva and the genetic algorithm approaches has been also realized and there are very small differences between these iterative and combinatorial approaches, except when considering the execution time. 2008 Elsevier Ltd. All rights reserved.
منابع مشابه
An Evolutionary Multi-objective Discretization based on Normalized Cut
Learning models and related results depend on the quality of the input data. If raw data is not properly cleaned and structured, the results are tending to be incorrect. Therefore, discretization as one of the preprocessing techniques plays an important role in learning processes. The most important challenge in the discretization process is to reduce the number of features’ values. This operat...
متن کاملAutonomous Underwater Vehicle Hull Geometry Optimization Using a Multi-objective Algorithm Approach
Abstarct In this paper, a new approach to optimize an Autonomous Underwater Vehicle (AUV) hull geometry is presented. Using this methode, the nose and tail of an underwater vehicle are designed, such that their length constraints due to the arrangement of different components in the AUV body are properly addressed. In the current study, an optimal design for the body profile of a torpedo-shaped...
متن کاملTree-Based Policy Learning in Continuous Domains through Teaching by Demonstration
This paper addresses the problem of reinforcement learning in continuous domains through teaching by demonstration. Our approach is based on the Continuous U-Tree algorithm, which generates a tree-based discretization of a continuous state space while applying general reinforcement learning techniques. We introduce a method for generating a preliminary state discretization and policy from exper...
متن کاملIdentification of an Autonomous Underwater Vehicle Dynamic Using Extended Kalman Filter with ARMA Noise Model
In the procedure of designing an underwater vehicle or robot, its maneuverability and controllability must be simulated and tested, before the product is finalized for manufacturing. Since the hydrodynamic forces and moments highly affect the dynamic and maneuverability of the system, they must be estimated with a reasonable accuracy. In this study, hydrodynamic coefficients of an autonomous un...
متن کاملA New Algorithm for Load Flow Analysis in Autonomous Networks
In this paper, a novel algorithm for the load flow analysis problem in an islanded microgrid is proposed. The problem is modeled without any slack bus by considering the steady state frequency as one of the load flow variables. To model different control modes of DGs, such as droop, PV and PQ, in an islanded microgrid, a new formula for load flow equations is proposed. A hybrid optimization alg...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Expert Syst. Appl.
دوره 36 شماره
صفحات -
تاریخ انتشار 2009